
Starlight: a clean-slate unified security architecture for the web

Abstract
Starlight is a new security architecture for the web that

provides policies that can be enforced uniformly across
a wide range of subsystems. Leveraging decentralized
information flow control (DIFC), Starlight allows data-
centered policies that directly capture higher-level user
requirements, such as privacy, and can be enforced across
both clients and servers. A key advancement over pre-
vious DIFC systems is that Starlight infers policies and
automatically sets labels and privileges based on user
interactions. To evaluate Starlight, we built a number
of web applications that take advantage of its security
and functionality including audio chat, search, a VOIP
client, a peer-to-peer video player, an editor and net-
worked Quake.

1 Introduction

The web is a prominent platform for deploying dis-
tributed, large-scale applications. A consequence of its
ubiquity is the need to address many security and pri-
vacy issues. Despite this, most of the security mecha-
nisms in core web components, including web browsers
and web servers, were designed without analytical foun-
dations [14]. In the case of web browsers, different
technologies such as HTML5, Javascript and plugins ad-
dress security policies separately, assuming different at-
tack models [39].

For instance, Java applets are executed according to an
“all-or-nothing” security model. A signed applet has the
power of a stand-alone program: it can connect to arbi-
trary third-party servers, access the local filesystem, call
native code, etc. On the other hand, an unsigned applet
is constrained to a restrictive sandbox (e.g., it cannot ac-
cess the filesystem). Similarly, Flash applications, like
unsigned applets, are sandboxed, but have the ability to
access media devices such as microphones when given
the user’s permission [12]. Regardless of these sandbox

mechanisms the user is provided with no real security
guarantees: they cannot be sure that data sent to the web-
server is protected according to any sensible policy.

In effect, each piece of web technology—Javascript,
Java, Flash, browser extensions, and especially server-
side frameworks—introduces its own, ad hoc security
mechanism. Worse yet, these mechanisms do not di-
rectly capture higher-level security properties end-users
are concerned with, such as data privacy. For exam-
ple, the same origin policy might partially address some
privacy concerns over data within the browser, but of-
fers little help once data leaves the client. Because the
web lacks a coherent security architecture, every new
feature requires a re-think of the enforcement mecha-
nisms. Arguments for the correctness and adequacy of
these mechanisms are entirely subjective. For instance,
in the case of HTML5 websockets, Firefox [27] decided
to disable them after vulnerabilities were revealed, but
other browser vendors felt it wasn’t serious enough to
warrant this action.

This paper presents Starlight, a clean-slate security ar-
chitecture for the web. Starlight provides a unified secu-
rity policy that can be used across technologies, browsers
and servers. It allows speaking objectively about the se-
curity of an individual feature, without the need to con-
sider every interaction it may have with any other present
or future subsystem. In Starlight, policies center around
protecting data rather than restricting particular actions.
Such data-centric policies can unify security across dif-
ferent abstractions and directly capture many end-user
security concerns. Starlight’s approach is based on de-
centralized information flow control (DIFC). A key con-
tribution of this work to the existing body of DIFC work
is the ability to set policy implicitly based on existing
user interactions with the application.

Starlight’s policies make use of a global namespace
of principals, which include end-users, web application
authors, and hosting providers. Starlight associates a la-
bel with every piece of data encoding who may modify

1



the data, who may download and further disseminate the
data, and who may observe but not further disseminate
the data. Therefore, in addition to discretionary access
control, Starlight introduces the ability to specify manda-
tory access control to the web.

Starlight subsystems label all data and enforce the re-
strictions encoded in labels. Principals can issue cer-
tificates stating that they trust other principals to handle
their data. Starlight defines a network protocol through
which machines can exchange labeled data, provided the
endpoints have certificate chains sufficient to satisfy the
requirements of the labels.

Starlight also provides a facility for setting labels and
privileges based on user interface actions. It provides a
small number of privileged widgets that infer user intent
from UI interactions and appropriately bestow permis-
sions on software. For example, in the case of audio con-
ferencing, selecting which other users to call implicitly
configures the microphone handler to label its output for
exactly those users.

We implemented Starlight in both a web server and
Google’s Native Client (NaCl) browser sandbox. We
have also adapted BFlow [46] to support Starlight at a
frame granularity in JavaScript. These represent an ad-
mittedly small subset of the widely used web technolo-
gies, but demonstrate the practicality and benefits of uni-
fying web security across varied subsystems. The Native
Client implementation, in particular, offers not just se-
curity but increased functionality as mobile code gains
access to previously prohibited devices and storage, sub-
ject to Starlight’s labels. Our audio conferencing appli-
cation is a good example of a new class of untrusted web
applications requiring no special privileges beyond those
implicitly offered by the user through the user interface.

Starlight’s contributions include a DIFC-based secu-
rity architecture for the web, an implementation in three
different subsystems, a mechanism for inferring security
policies from user actions, and, finally, an enhanced API
to provide web applications with greater access to stor-
age, networking, and devices. In part because Starlight’s
design prioritized uniform security over backwards com-
patibility, we realize our own implementations are un-
likely to be adopted by browser vendors. Nonetheless,
by demonstrating what is possible, we hope our work can
inform the web security discussion and influence the se-
curity of still evolving newer technologies such as Native
Client.

2 Motivating example

As a driving example, we consider the case of building
a browser-based voice over IP (VoIP) application. Fig-
ure 1 illustrates the different components of this applica-
tion in the context of today’s web-architecture. The setup

Browser

Client App

Cloud provider

Server-side

App

Browser

Client App

Alice BobPeter

Figure 1: Existing framework of a web-based VoIP ap-
plication. Alice and Bob use the VoIP app, authored by
Peter. In the setup, the users must trust the whole appli-
cation stack (shaded), including the app author.

consists of three parties [40]: the end-users, the applica-
tion author, and cloud provider (e.g., Amazon EC2); to
launch an application, users visit the website that is pro-
vided by the application author and hosted by the cloud
provider.

In existing applications, such as Google Chat [6]
or Twilio Client [11], users initiate calls through an
HTML/JavaScript interface provided by the application
author (who may also be the cloud provider, in this case).
However, since neither JavaScript nor HTML have ac-
cess to the user’s microphone, these applications rely on
browser extensions (Google Chat), or plugins, such as
Flash (Twilio). Consequently, the security implications
of using these applications are complex. In the case of
a browser extensions, the user gives the extension access
equivalent to a standalone program. Flash, on the other
hand, prompts the user to give the website access to the
microphone device. In both cases, once the consent has
been granted, the user has no guarantees about (and, in
fact, has no way of even specifying) where the captured
voice will end up. Moreover, in most cases, user inten-
tions are clear—only the end-user participants in the call
should receive the audio stream—yet, lacks a means of
tracking and enforcing correct information propagation.

Figure 1, highlights the core components that must be
trusted when using an existing Flash-based VoIP appli-
cation. Specifically, in addition to trusting the browser
and the Flash implementation, the user must also trust:

1. the HTML/JavaScript client code to initiate a call to
the correct recipient,

2. the Flash application to communicate audio only to
the VoIP server,

3. the VoIP server not to leak the audio stream to un-
intended recipients or to store it to disk,

4. and the cloud platform hosting the application.

Using the existing framework, users must essentially
trust the entire application stack, despite being limited to

2



Server-side

App

Starlight

Browser Cloud provider Browser

Alice BobPeter

Client App

Starlight

Client App

Starlight

Figure 2: Proposed framework of a web-based VoIP ap-
plication. Alice and Bob use the VoIP app, authored by
Peter. In our setup, the users need not place any trust in
the app components.

expressing very coarse-grained intentions (in this case,
whether to allow a part of the stack to access the micro-
phone). The goal of Starlight instead is shown in Fig-
ure 2, namely eliminating the trust placed in components
(1-3): application code, both in the browser and on the
server need not be trusted to enforce security. Section 7.1
details how this secure audio chat is realized in Starlight.

3 Starlight Overview

Given our goal to eliminate trust in application code, we
define a threat model and present a high-level system
architecture that allows us to safely transport informa-
tion across the network, like the microphone audio as
described in our motivating example.

3.1 Threat model
Adversary: Starlight assumes the web attacker [14]
threat model where an attacker controls both the client-
side and server-side application components.

Assumptions: On the client-side, we assume that
Starlight’s UI integration grants only the privileges ap-
propriate for certain user actions and is not otherwise ex-
ploitable.

On the server-side, we assume that cloud providers run
Starlight. Previous work on remote attestation such the
trusted platform module [36], and CloudVisor [50] may
obviate this assumption.

For both the client-side and server-side, it is necessary
for trusted code to be implemented correctly. Specifi-
cally, it must not be possible for applications to break
out of their sandbox and IFC labels must be properly en-
forced.

Security guarantees: Starlight guarantees that confi-
dentiality and integrity of user data are preserved, end-

Figure 3: A user interface example that captures the
user’s intent and implicitly sets the security policy.

to-end, according to user-specified policies. Starlight, as-
sociates policies with data and enforces the requirement
that applications respect these policies on both the client
and the server. Referring back to the VoIP example, the
client application cannot record microphone information
and exfiltrate it to an arbitrary server, store the informa-
tion on the server-side, or exfiltrate it from the server to
a party other than the user-specified destination.

Without explicit trusted user actions, Starlight appli-
cations are harmless. Starlight guarantees that privileges
can only be granted by privileged UI widgets and, like
capabilities, cannot be forged or treated as data. It is only
by exercising these privileges that sensitive user data can
be downgraded (declassified), or modified.

Limitations: Starlight applications gain privileges as
a direct result of user actions. Consequently, social-
engineering and phishing attacks can still be carried out.
For instance, a malicious application may instruct the
user to input their password in place of a file name,
downgrade information to be uploaded to a malicious
server, or even download an executable. Such attacks
are outside the scope of this work, and we do not address
them.

We also do not directly address covert channels in this
work. However, Starlight’s support for discretionary ac-
cess control using clearance mitigates these kinds of at-
tacks by preventing applications from accessing secret
data.

3.2 System architecture
Starlight requires the following components to imple-
ment information flow control end-to-end with policies
derived from user actions:

User action model. Starlight sets security policies
based on user actions performed in the application.
Figure 3 shows how an audio chat application

3



might ask the user whom to call. The UI widget
is privileged in that the Starlight runtime can
monitor the user’s selection and set a security
policy accordingly. In this example it would let the
microphone audio stream flow only to the selected
user, Bob.

Application sandbox. Starlight depends on sandboxing
to restrict an application’s access to secret informa-
tion sources and to enforce IFC constraints. A sand-
box must be used in each location that runs applica-
tion software, both on the server and in the browser
as shown in Figure 2.

Global namespace and network protocol. Starlight
must support the distributed nature of web appli-
cations. This requires a networking protocol that
allows transmission of labeled data. It also requires
a global namespace to uniquely identify principals
on the Internet. For example there must be a unique
way to identify “Bob” on the Internet to send a
microphone audio stream to him.

4 Information flow control

In a traditional access control system, permissions are
associated with abstractions such as files. For instance,
a file’s ACL might state that user A or B can read its
contents. The ACL restricts who can read the file, but
once the file is read, the ACL becomes irrelevant; the
process can write the contents to a publicly readable file
or transmit it over the network.

Information flow control (IFC), by contrast, associates
policies directly with data, regardless of the abstractions
used to contain the data. Conceptually, every bit has a
label stating who may observe or modify it. If a process
reads a file labeled L, the memory into which the con-
tents is read must also be labeled L (or something more
restrictive than L). If the contents is subsequently writ-
ten to a new file, the new file must also have a label as
restrictive as L. When data are combined, their labels are
also combined to reflect all restrictions on all sources.
For instance, combining contents readable by A or B with
contents readable by B or C results in contents readable
by only B, as only B could read both sources.

Decentralized information flow control (DIFC) re-
laxes IFC by introducing privileges that allow software
to bypass certain label restrictions. It is decentralized
because different privileges allow different software to
bypass different restrictions. For example, software with
user A’s privileges might be allowed to take data labeled
for A or B and make it public, while it could not do the
same given data labeled for B or C.

Starlight adopts a type of label called DC labels [22].
DC labels express privileges in terms of principals,

can't modify can't observe

no access

all access observation
changes Lcur

Figure 4: Access permissions to data labeled L. The red
region requires mandatory access control.

which in Starlight include public keys and URL origins.
(For example, a network endpoint has the privileges of a
public key when it can produce an appropriate signature
and certificate chain.) A DC label specifies which sets of
principals can export (i.e., disseminate) data and which
can modify it. These sets are expressed as boolean for-
mulas over principals, which we typically write S (“se-
crecy”) for the export sets and I (“integrity”) for the mod-
ify sets. Hence, a DC label is written 〈S, I〉. We note that
each label has a unique representation in conjunctive nor-
mal form. By analogy with military security, we some-
times refer to a disjunctive clause as a category, making
each label component a conjunction of categories.

An important question is when a label L2 is as restric-
tive as another L1, a partial order we write L1 v L2 (pro-
nounced “L1 can flow to L2”). For DC labels, v is de-
fined using logical implication on the component formu-
las. If L1 = 〈S1, I1〉 and L2 = 〈S2, I2〉, then L1 v L2 iff
S2 =⇒ S1 and I1 =⇒ I2. In other words, anyone who
can export data labeled L2 can also export data labeled
L1, and anyone who can modify data labeled L1 can also
modify data labeled L2. Without privilege, data labeled
L2 can depend on data labeled L1 only when L1 v L2.

Executing code is always associated with two labels,
the current label, Lcur, and current clearance, Ccur. Code
may change the value of Lcur to any value Lnew in the
range Lcur v Lnew v Ccur. In other words, the value of
Lcur is monotonically increasing and bounded by Ccur.
Lcur and Ccur precisely determine the current level of ac-
cess allowed to data. Data labeled L can be observed
only when L v Lcur and modified only when Lcur v L.
Figure 4 summarizes this relationship.

Executing code may also have access to privileges,
which like label components are expressed as boolean
formulas over principals. Typical privileges might be the
conjunction principals who have issued certificates af-
firming trust in a particular server. Exercising privileges
p for an operation causes Starlight to enforce an alter-
nate, more permissive can-flow-to relation vp, defined
as 〈S1, I1〉 vp 〈S2, I2〉 iff S2∧ p =⇒ S1 and I1∧ p =⇒ I2.
For example 〈[A∨B], []〉 vA 〈[], []〉, since A is allowed to
export data with S = [A∨B]. Note the empty boolean
formula [] is an abbreviation for True.

Starlight assigns the public network an empty label,

4



L /0 = 〈[], []〉. If code could always talk to the network,
then code would always have Lcur = L /0 and IFC would
boil down to verifying p =⇒ S on reads and p =⇒ I
on writes of data labeled 〈S, I〉. A more interesting case
arises when code lacking export permission nonetheless
wishes to read data with a non-trivial label. If the tar-
get label is below Ccur, the code can still read the data
by raising Lcur, but in the process gives up the ability to
write to the network. This ability to trade write for read
permissions is a form of mandatory access control differ-
entiating Starlight from most existing web technologies.

Most mobile code does not have direct access to the
network in Starlight. Nonetheless, code often needs to
communicate across the network to other code running
with a comparable label on a different machine. To al-
low labeled network communication, Starlight provides
an exporter service that effectively exchanges labels for
encryption. Exporters have the privileges required to
send and receive labeled data from the network, but do
so only under two conditions: First, over the network
exporters only communicate with other exporters who
cryptographically prove they have sufficient privileges to
send or receive the labeled messages in question. Sec-
ond, exporters ensure that on the local side, plaintext
messages are appropriately labeled as requested by or as-
serted to the remote exporter. Exporters were originally
introduced by [49]; we refer readers to that work for a
more detailed explanation.

5 System design

Starlight provides built-in privileged UI widgets, which
are used to endorse certain user actions. In addition, pol-
icy modules, which are shipped with the browser or man-
ually installed by users, provide a means of granting ap-
plications privileges based on those endorsements.

Starlight enforces IFC using NaCl and BFlow [46] on
the client-side, and the Haskell Labeled IO library [41]
on the server-side. Finally, our client-server network
communication respects labels by using a DStar-like pro-
tocol that leverages WebFinger for globally naming prin-
cipals. We now present these core design components in
detail.

5.1 User action model
The user action model is responsible for inferring pol-
icy from user actions. It consists of a fixed-set of privi-
leged UI widgets and a collection of policy modules. We
decouple the user interface from the privilege-granting
code. This allows the flexibility to develop policy mod-
ules independently of UI code. Moreover, it reduces the
attack surface of policy decision-making code. Specifi-
cally, the user action model contains:

1. Privileged UI widgets are used to perform common
actions such as accessing a microphone or initiating
a network connection to a mail server, the action of
which produces an endorsement.

2. Policy modules are small, trusted applications that
translate endorsements to application privileges.

The privileged UI consists of a set of widgets which
applications can launch in order to interact with users,
and ultimately, convey the required privileges necessary
carry out the user’s intent. Starlight provides the fol-
lowing widgets: textbox, button, hyperlink, icon, file
chooser, address book (the endorsement represents a
contact selection), and input device, including micro-
phone and webcam.

User action endorsements provided by the privileged
UI are specified in the form of integrity categories as
added to the application process’ label. For exam-
ple, if the user types in “mail.google.com” in a textbox
widget titled “Enter SMTP server address”, the pro-
cess would obtain the integrity category “textbox://Enter
SMTP server address/mail.google.com”. Since applica-
tions do not own the“textbox://” principal, or any other
principal used by the privileged UI widgets, applications
cannot forge such integrity categories.

As mentioned, applications can invoke policy modules
with user action endorsements. The policy modules in-
spect endorsements and may grant the application priv-
ileges. For example, a policy module invoked with the
“textbox://Enter SMTP server address/mail.google.com”
endorsement may grant the application the privilege to
connect to mail.google.com on TCP port 25. In ad-
dition to granting the application this privilege (e.g.,
by adding integrity categories to the application’s la-
bel), the policy module may additionally remove cer-
tain protection mechanisms (e.g., DoS rate limiter). We
note that the policy modules will likely be designed
defensively to accept endorsements. For example, the
SMTP policy module will expect endorsements prefixed
with “textbox://Enter SMTP server address”. This en-
sures that if the user is asked to input a hostname by
a deceiving textbox caption (e.g., “Enter smtp.evil.com
here”), the application cannot use the received endorse-
ment (“textbox://Enter smtp.evil.com here/evil.com”) to
gain privileges from the SMTP policy module.

One challenge is that an untrusted application could
try to impersonate a privileged UI widget. Although this
could not be used to escalate privileges, the attacker may
still be able to conduct a phishing attack and coerce the
user into divulging secret information. One possible mit-
igation strategy might be to make trusted UI widgets
visually distinct, for example by darkening the screen
around it, including regions of the framebuffer not con-
trolled by the application.

5



5.2 Application sandbox

Starlight uses sandboxing in the browser and on the
server-end to restrict applications to APIs that respect
IFC. For example, our sandbox guarantees that after an
application has read a sensitive user-data, it cannot con-
nect to arbitrary remote hosts.

5.2.1 Client-side sandbox

All system calls (to Starlight) and IO communications
are subject to information flow control restrictions. We
track and enforce IFC using DC labels. Every application
owns a set of principals:

• The HTTP origin of the application

• Application-specific public key

• Vendor-specific public key

Ownership of the HTTP origin principal allows appli-
cations served from the same domain to share informa-
tion with each other. Specifically, to share information
with another application from the same domain, an ap-
plication can simply label data such that every secrecy
clause of the DC label contains a disjunction of the ori-
gin principal. In general, the disjunction property of DC
labels provides a means for sharing information between
applications, and allows for the implementation of very
rich applications, such as mashups.

In Starlight, every client-side web application is
signed with an application and vendor key. By labeling
data with the principal of the application key hash the
application can safeguard sensitive information. Con-
versely, labeling data with the vendor-specific key hash
allows applications written by the same vendor to share
information, in a manner that is more fine-grained than
using the HTTP origin.

Enriching the web with APIs: We extend client-side
web functionality by providing secure file access and ar-
bitrarily complex network communication. Our filesys-
tem is implemented as a file store, in a directory ded-
icated to the web browser, where a label is associated
with every file. Using the labeled filesystem, authors can
build complex web applications that can share files on
the client-side, permitting IFC restrictions. (We note that
since the file store is on the user’s machine, the user can
specify per-application quotas.)

As with filesystem access, arbitrary network commu-
nication is allowed as long as it obeys IFC; this is ensured
by requiring that all communication be handled by a lo-
cal DStar-like exporter [49]. A consequence of providing
arbitrary network access is that Starlight needs to protect

against malicious applications that leverage user band-
width to harass remote servers (e.g., by sending spam
or participating in DDoS attacks). To enforce this, we
require that an application obtain an endorsement via a
privileged UI, certifying that the user wishes to establish
a specific network connection or listen on a socket.

To allow for the functionality provided by cross-origin
resource sharing, a client application may connect to a
remote server without a user endorsement if the remote
host explicitly affirms the connection. This is determined
by the Starlight runtime via a simple UDP protocol on a
port 1392. The runtime sends a hash of the application
and a connection request (protocol and port number) to
the target server, allowing the application to proceed with
the connection only if the that remote server is in agree-
ment. Such requests are rate-limited to make DoS attacks
via the authorization protocol ineffective.

5.2.2 Server-side sandbox

The server-side sandbox requires a subset of the client-
side functionality. Specifically, on the server-end
Starlight need not address issues related to DoS attacks,
API extensions, or user interaction. Therefore, existing
dynamic IFC systems, such as Flume [32], HiStar [48],
and the Haskell Labeled IO library [41], can be used to
sandbox server applications. In Section 6.1 we describe
our server-side implementation.

5.3 Global namespace & network protocol

Since policies, in the form of labels, must be transported
across the network between Starlight’s client-side and
sever-side components we rely on a protocol, similar to
DStar [49]. We require that the protocol not leak infor-
mation in establishing a connection with a remote en-
tity, verify the trustworthiness of a remote application,
encrypt messages as to preserve confidentiality, and en-
code labels in a network-meaningful way.

The latter requirement plays a crucial role in Starlight.
To encode labels in a network-meaningful way, Starlight
requires a mechanism for globally naming principals (i.e,
users) on the Internet. This is important because, for ex-
ample, a user using a UI widget to specify that her audio
stream should be shared with her friend “Bob” is a lo-
cal designation of “Bob”—we require a unique, global
way to name “Bob”. To this end, we rely on WebFinger,
which allows for associating arbitrary data with unique
names, which themselves are akin to e-mail addresses. In
Starlight, we follow DStar’s convention that each princi-
pal owns a public key, which corresponds to the princi-
pal’s identity. A key difference however is that we cannot
expect lay web users to refer to each other using public
keys. This is why we need a user friendly naming scheme

6



like E-mail addresses and we use WebFinger to learn the
corresponding public keys.

WebFinger provides a means for our privileged UI
widgets to refer to principal public keys in a friendly
way. Specifically, in the VoIP example the applica-
tion may refer to ‘Bob’ using his WebFinger name
‘bob643@wordpress.com’.

Users store their public key and exporter informa-
tion for each application with their WebFinger provider.
(Much as users trust their e-mail providers, we assume
that users trusts their WebFinger providers.) The infor-
mation stored with the WebFinger provider includes the
user’s public key and, for each application the user has
installed, a URL with access information for the exporter
and the exporter’s public key. However, these URLs do
not point directly to an exporter. Rather, they return the
IP and port number used to connect the exporter. This
level of indirection allows providers to offer load balanc-
ing, by, for example, returning different IPs and ports.

Like users, exporters are authenticated using public
key. Finally, we note that all information of a user’s
WebFinger entry is signed with their public key, there-
fore the WebFinger server need not be trusted beyond the
first lookup (assuming the public key is cached locally).

6 Implementation

We implemented Starlight for Firefox to allow BFlow
integration. We use an older (NPAPI) version of NaCl
since the latest (Peppr2) version only supports Chrome.
Our implementation consists of a 6,341 line patch to Na-
tive Client and a 143 line patch to BFlow. Our Haskell
application server and extensions to LIO are 1,235 lines.

We added APIs for setting and retrieving labels, regis-
tering and invoking policy modules, and adding trusted
UI widgets. Our trusted UI widgets are implemented
as a GTK popup running in a separate process which
Javascript and CSS cannot affect, thus ensuring they are
tamper-proof and isolated. A cleaner implementation
would modify the browser’s rendering engine to display
the widgets inline within the page, while still making
them tamper proof.

We also added POSIX calls for filesystem and net-
working support, like open, read, close, socket,
bind, etc. The filesystem’s root is in a private direc-
tory reserved for NaCl applications only. We maintain
two separate directory trees in the filesystem: one where
files with the same label are stored in the same direc-
tory, and another “shadow” filesystem where files are
symbolic links but the directory structure is user-defined.
This organization allows us to store label information
without while preserving a root directory that looks, to
the user, like a traditional filesystem, without modify-
ing the OS filesystem. Audio is supported by expos-

ing a /dev/dsp-like file. Labeled networking uses
tcpcrypt [15] for encryption and we wrote our own ex-
porter and WebFinger implementations.

All the I/O operations we added to NaCl required
adding label checks. We also had to ensure that the APIs
we offer did not leak information—for example, two pro-
cesses can collude via the bind system call when trying
to attach to a port and convey information if the bind call
succeeds or fails. NaCl uses IMC for its IPC and NPAPI
to communicate with Javascript so we also added label
checks to both, and carry over label information when
speaking to Javascript.

BFlow does not support disjunctive labels, so we need
to translate disjunctive labels into traditional ones. To
do this we hash the string representation of each disjunc-
tive category in Starlight and use that as a BFlow tag.
To convert from BFlow tags to disjunctive labels, we use
a category with no disjunction and use the string repre-
sentation of the BFlow tag. This way tags flowing from
BFlow servers to NaCl and back are preserved and re-
main compatible end-to-end. Prior to each NPAPI call,
the Starlight runtime invokes BFlow’s reference moni-
tor (via a socket) to taint the BFlow protection zones
with any secrecy the Starlight module holds, and taints
the Starlight module with any BFlow tags the protection
zones hold. Our changes to BFlow are minimal since
NaCl deals with integration logic, such as label conver-
sion.

6.1 Haskell application server

Although the NaCl-based implementation can directly
be used to implement server-side components, we use a
language-level IFC system to get fine-grained labeling.

We built an application server platform using Labeled
IO [41], a Haskell IFC library. Unlike NaCl, where the
labeling granularity is at the process-level, LIO provides
a means for enforcing IFC at a very fine-granularity.
Namely, LIO provides a means of associating a label
with a value. For example, a value of type DCLabeled
Integer is a DC labeled integer. As in NaCl, observ-
ing sensitive data raises the current label, precluding the
thread from writing to public entities.

An especially attractive property of the LIO library
when implementing web-server applications, is the abil-
ity to execute computations that operate on differently
labeled (and potentially secret) data without raising the
current label. To achieve this, LIO provides a function
named toLabeled, which is a generalization of con-
strained buffers [40]. With toLabeled, applications
can manipulate user-sensitive data, without having to
raise the current label (but also without having the abil-
ity to observe the computation result). The result of a
toLabeled computation is a labeled value, which may

7



Alice’s client
S [Alice ∨ Bob] I []

O [Alice]

Bob’s client
S [Alice ∨ Bob] I []

O [Bob]

/dev/dsp
S [Alice ∨ Bob] I []

/dev/dsp
S [Alice ∨ Bob] I []

hosted server
S [Alice ∨ Bob] I []

Figure 5: Labeling in the audio conferencing system. S
denotes secrecy, I integrity, and O ownership.

be unlabeled at later point (it is at this point where the
current label is raised). Of course, it is possible for an
application to never unlabel such values, thus remain-
ing “untainted”, and simply forward the labeled values
to end-users that have the privilege to observe them.

We extend LIO in a number of ways to allow ex-
ecution of untrusted server-side applications. Specifi-
cally, we add a covert-channel safe subset of Haskell
lightweight threads, support for labeled mutable loca-
tions, MVar [29], labeled (unbounded FIFO) channels,
and a trusted exporter which exposes a safe, untrusted
API to server-side applications.

7 Applications

We built a number of applications for Starlight, including
the audio chat service used as an example in Section 2, a
desktop search tool that searches both the web and local
files, a SIP phone, a peer-to-peer video player, a text edi-
tor, and extensions to NaCl’s Quake video game demo to
support networked games and saving of game state. To
port existing UNIX console applications we developed
a terminal for Starlight. We ported SDL terminal [10]
and Freetype [5] to create an xterm-like environment and
ported ash to it for a shell. Both our text editor and desk-
top search use this terminal.

7.1 Audio chat

Our audio chat application send user audio streams to
a server; the server then mixes the audio and sends it
back to the users. This demonstrates a basic conference
call system within Starlight. It relies on Starlight’s end-
to-end nature, utilizing both client-side and server-side
components and shows how a client-specified security
policy is enforced across a distributed web application.
It also demonstrates the use of disjunctive labels in sup-
porting collaboration between multiple users.

The Starlight NaCl extension provides the extra func-
tionality needed in a web browser to program an audio
application and set security policies. The remote user’s
public key (principal name) and the server to contact for
a call is determined via WebFinger. Next, the exporter is
used to ensure that this server is trusted and that it speaks
for the remote user being called. The exporter then al-
lows labeled data to flow across the Internet.

The audio chat server, running on the Haskell appli-
cation server, handles connections and audio multiplex-
ing. The application server ensures that client labels are
respected. Specifically, the audio chat server cannot dis-
close the audio stream elsewhere on the network or save
it unlabeled to disk.

The chat application presents an address book to the
user upon startup. This interface is generated by Starlight
as a part of the trusted UI. It includes a widget that indi-
cates that the microphone will be shared, thus showing
the user the link (and flow) between input device and re-
mote peers. The user then selects which peers can re-
ceive data from the microphone device. In response, the
microphone is labeled by the runtime as a disjunction of
all the peers selected by the user. This enables the ap-
plication to connect to the exporters and send the labeled
microphone stream. A diagram of this labeling scheme
can be seen in Figure 5.

7.2 Desktop and web search

Our search application demonstrates an application that
accesses the local NaCl filesystem, talks to a trusted
hosted provider to store an index for distributed search-
ing, and communicates to untrusted network hosts to per-
form a websearch. All this is done without disclosing
the user’s private files. We implemented this by porting
idutils [7] to Starlight, developing a frontend wrap-
per for it to obtain the search root directory and search
terms.

We perform the web search first, while the search ap-
plication is still “untainted” and holds no secrets (as it
has not read local files yet). Only after all web search re-
quests are fulfilled do we perform the local search, after
which, (unlabeled) network access will be denied. For
a new search, a fresh, instance of the application is cre-
ated and search starts over from the beginning. Desk-
top search can also upload the client’s index to a server
running Starlight to support server-side search while still
guaranteeing that the user’s file contents will not be dis-
closed. Figure 6 shows the components and labeling of
our search application. Desksearch is allowed to col-
laborate with third-party plugins or applications to ex-
tract metadata from files for better search results.

8



Desksearch
S [pics ∧ idx]
I [idx] O [idx]

Websearch
S [] I []

jpgextract
S [pics] I []

pic.jpg
S [pics] I [pics]

index.db
S [idx ∧ pics]
I [idx]

network
S [] I []

hosted server
(index.db)

S [pics ∧ idx] I [idx]

Figure 6: Labeling in the search application.

7.3 SIP phone

We ported pjsip [9] to Starlight and developed a SIP
phone web application to demonstrate how Starlight can
interact with already deployed servers and to show the
intended use of policy modules. SIP works by contact-
ing a configured local proxy to resolve the address of the
person being called, and then connecting to that address
directly. We use a trusted UI textbox to configure the SIP
server and the application obtains networking privileges
to the proxy via a networking policy module. The policy
module converts endorsements for textboxes with cap-
tion “Enter server IP and port” to privileges for network
connections to that IP and port, and is generic enough
to be used by many networking applications. For outgo-
ing calls, an additional policy module is needed to grant
permission to contact the SIP server of the person be-
ing called. This takes two endorsements: one for the
local SIP proxy (to prove which proxy the user wishes to
use) and one for the SIP address being called. The policy
module will contact the SIP proxy, resolve the address of
the person being called and allow the application to con-
nect to that address. This policy module is generic to SIP
and can be used by any SIP client. The policy module
can be avoided if the SIP proxy happens to be the ori-
gin server and is configured to route all SIP traffic. This
is a mode often used for SIP to work in the presence of
NATs. Figure 7 shows the labeling of our SIP applica-
tion. With the two endorsements of the SIP proxy and
the destination SIP address, the application uses the SIP
policy module to obtain privileges for the IP address of
the person being called and then performs the call.

The UI of our SIP client is implemented in Javascript.
When receiving a call, the caller ID is displayed in a
Javascript textbox, which thanks to BFlow, we can en-
sure it will not be disclosed on the network.

SIP client
S [] I [tb://Proxy/sip.com ∧ tb://Call/bob@x.org]

SIP policy module
S [] I [net]

sip.org
S [] I [net]

Invite bob@x.org

Bob is at 1.2.3.4

Call bob@x.org Add label I [udp://1.2.3.4]

Figure 7: Labeling in the SIP application.

7.4 Peer-to-peer video player
We wrote a peer-to-peer video player that uses BitTorrent
to share and stream videos on demand, showing the flexi-
bility of Starlight’s client-side. We ported libbt [1] and
ffmpeg [3] to do this. Users can choose which folder
to share via a file chooser through the trusted UI. This
endorsement is used by a generic policy module to give
read permission to all files in the selected subtree.

Allowing networking is more challenging. BitTorrent
talks to a tracker and learns the IPs of hosts participat-
ing in the torrent. We implemented a BitTorrent policy
module that given an endorsement for a torrent file, con-
tacts a tracker, determines which IPs are participating in
the torrent and grants the application privileges to talk to
those IPs. The endorsement is proof that a user wishes to
participate in a torrent. In our case this is a hyperlink to
a torrent file. We assume the user trusts the tracker and
authorizes connections when clicking on a torrent link
(which displays the full URL of the tracker and torrent).
This is similar to what users already do today when open-
ing a torrent file from a web browser which then launches
a torrent application. Our BitTorrent policy module is
generic for the BitTorrent protocol—it can be used by
any BitTorrent client for peer-to-peer sharing, or in fact
be used to implement a video player as we did.

Figure 8 shows the labeling in our video player. Given
an endorsement that the user clicked on a torrent file, the
BitTorrent policy module contacts the tracker and allows
the application to connect to the IPs and ports listed by
the tracker.

7.5 Other: text editor, networked Quake
We ported the ed [2] text editor to Starlight. This appli-
cation demonstrates a simple way the information flow
security framework of NaCl can be used purely on the
client-side to protect user’s data from other NaCl appli-
cations, and how application writers can set their own
security policies. By default all the files it creates are
accessible only to itself, that is, other applications will
require clearance from ed even for reading the files. We
extended ed to recognize when files are saved in a folder

9



Video player
S [] I [lt://Torrent/torrent.org/rocky]

BT policy module
S [] I [net]

torrent.org
S [] I [net]

GET /rocky

rocky.torrent
1.2.3.4
6.6.6.6

Get rocky Add label I [tcp://1.2.3.4 ∧ tcp://6.6.6.6]

Figure 8: Labeling in the video player application.

named “shared”. In this case ed will automatically grant
clearance to applications wishing to read any of those
files. Note that applications will still be unable to leak
any information they learn from these files to the net-
work. Another directory, “public”, exists in which ed
saves files unlabeled, allowing them to be read freely and
sent over the network.

We also modified NaCl’s Quake demo to support load-
ing and saving games, and added support for peer-to-
peer networked games. Quake’s UI already asked players
for the IP address of the server. We converted that to a
trusted UI widget so the application gets an endorsement
for the user typing in an IP address and port number. We
use the same networking policy module used in our SIP
phone for proxy connection. Once again we do not need
to ask the user for additional privileges—we can infer in-
tent from actions that need to be performed anyway (like
configuring server addresses).

8 Evaluation

We evaluate Starlight in three ways. First, we argue for
the security of both the design and implementation of
Starlight. Next, we show that the Starlight API is flexi-
ble enough to allow porting of existing applications with
minimal effort. Finally, we present performance bench-
marks and discuss the impact of IFC on our measure-
ments.

8.1 Security

In using existing security design such as exporters (from
DStar) for networking and DC labels for our label for-
mat, we inherit their associated security properties by
construction. Below, we discuss Starlight-specific secu-
rity and trust concerns.

On the client we increase the TCB of NaCl and thus
its attack surface—the exporter and label checking code
account for 1150 lines. Our implementation makes an

effort to provide safe APIs that do not allow NaCl ap-
plications to leak information through covert channels.
Covert channels are an issue in most information flow
control systems, and Starlight attempts to address this
issue with the use of clearance. Nevertheless, our im-
plementation approach is not ideal, as much of our APIs
are implemented in the trusted runtime. Previous IFC
systems, such as HiStar, minimize the attack surface by
limiting the trusted kernel interface to a small subset on
top of which a more complex, but untrusted, API can be
built. Although this architecture is viable in our environ-
ment, it conflicts with our desire to use the existing NaCl
code base.

On the server side, we use LIO to guarantee that end-
to-end confidentiality and integrity is preserved, and that
clearance is respected when confining an application.
The latter properly allows us to essentially “sandbox”
different applications. We extend LIO with mutable lo-
cations and channels (for a total of 132 lines to TCB),
however the IFC properties of these constructs closely
match the existing mutable references and filesystem
constructs, part of which have been proven sound [41].
Introducing threads in an IFC system would typically re-
quire much stronger guarantees than those of LIO. How-
ever, we avoid new security implications by limiting
the observation power of untrustworthy application (e.g.,
disallow measuring CPU time). Moreover, threads are
limited to communicating through channels and mutable
locations, and different applications are restricted from
communicating via the network or file-system. From
the perspective of IFC soundness, different application
threads can be viewed as separate processes.

In our architecture, as summarized by Figure 2, there
are various notions of trust imposed on Starlight users.
First, users must trust the correctness of the Starlight
runtime locally and in the cloud. A malicious applica-
tion could leverage a vulnerability in either the client
or server to circumvent IFC restrictions and violate the
system security policies. For example, if the server ex-
porter does not properly verify that client exporters can
speak for the data, a malicious client application can es-
sentially forge any data and transmit it to other clients
of the application server. As previously mentioned, the
user must also trust the cloud provider to actually run
Starlight. (A level of trust that might someday be re-
duced tamper-resistant hardware and attestation, though
current datacenter hardware is not up to the task.)

In addition to trusting the correctness of Starlight,
users must trust their WebFinger provider—specifically
that the provider responds with the correct public key
when queried. Of course, to remove this trust users can
run private WebFinger servers. Furthermore, as the no-
tion of identity in our system depends on WebFinger
providers with which users may only have a transitive

10



Application Total Patch Policy module

Editor 3,210 0 0
Desktop search 43,016 0 0
SIP phone 413,343 591 0 for NAT. 150

for peer-to-peer.
Video player 407,561 886 91
Quake 109,302 2,717 0

Table 1: Changes needed to port applications and lines
of trusted code.

relationships, an implicit “trustworthiness is bestowed on
them. For example, if Alice tells Bob that her WebFinger
address is alice@home.org, Bob cannot but assume
that home.org will provide Alice’s correct public key.
However, depending on the sensitivity of the communi-
cation, integrity of the WebFinger may only be of con-
cern to one of the parties. Consider, for example, Bob
transmitting data that is sensitive to Alice but not to him:
in this case, only Alice must trust the integrity of her
WebFinger provider.

The client-side Starlight design also relies on the no-
tion of trusted UI widgets. These UI components in-
clude, e.g., a file browser and a dialog that can be used
to give applications access to the filesystem, or input
devices such as a microphone. As in capability sys-
tems [34], Starlight infers policies exclusively from user
actions in the trusted UI. Thus, even if a malicious ap-
plication presents the user with a crafted widget, it will
not be able to escalate its privileges. Similarly, an ap-
plication cannot access the user’s microphone by “trick-
ing” Starlight into supplying it privileges by claiming
that user has approved the said action. Moreover, the
trusted UI runs in a separate process, completely segre-
gated and tamper proof from NaCl applications, a design
approach similar to the powerbox [34, 42]. Of course,
malicious applications can still employ social engineer-
ing to “trick” users into performing certain actions, such
as installing malicious software. Mitigating such attacks
is outside the scope of Starlight, and we refer the reader
to [18] for methods addressing such issues.

8.2 Porting

Table 1 shows the amount of code that was required to
port applications to Starlight, and the size of the pol-
icy module required by each application. All five ap-
plications we ported to Starlight from existing code re-
quired only very small patches. For example, adding
networking and filesystem support to Google’s NaCl port
of Quake only required 453 lines of code (compared to
109,302 lines of code overall, and 2,264 lines of code
in the original Google patch for NaCl). Policy modules
were only required for the SIP phone and Video player

Benchmark Linux NaCl Starlight
no label

Starlight

creat 6 20 447 460
open 3 10 40 44
unlink 13 24 71 78
read 4 – – 5
write 5 – – 14
ping (net) 147 148 259 266

Desksearch
(index)

921ms – – 713ms

Desksearch
(find)

1.01ms – – 0.97ms

Table 2: Overhead (us) of Starlight I/O.

applications, and even then the modules were only 91
and 150 lines of code, respectively. Such small additions
to the trusted code base can feasibly be audited by hand.

Rewriting these applications in a language already
supported by browsers—e.g., Javascript—would require
significantly more effort. Note that porting some of these
applications to Javascript, or vanilla NaCl would have
been impossible due to the lack of filesystem and net-
work support. Therefore, not only does Startlight pro-
vide better security guarantees, it also enables features
not possible in existing systems.

8.3 Performance
Compared to a running applications natively, Starlight
introduces overhead in both the NaCl sandbox and from
information flow control checks. Since the overhead of
the NaCl sandbox is well understood [44], we use this
as our baseline for evaluating Starlight, and examine the
overhead introduced by the IFC checks.

We perform microbenchmarks on Starlight’s I/O, mea-
suring the operation time of common filesystem oper-
ations, and a simple local network TCP ping (measur-
ing RTT). All benchmarks were performed on a 2006-
era laptop (Thinkpad x60s), a dual core Intel Core Duo
1.6GHz with 1GB of RAM running Linux 2.6.33 and
Firefox 3.6. Table 2 shows the results in Starlight,
Starlight with no label checks, a version of NaCl that
simply forwards the system calls, and native Linux.

The baseline NaCl costs 2–3x compared to Linux.
Starlight introduces an overhead of up to 4x on top of
NaCl in all microbenchmarks except creat which is an
order of magnitude slower in Starlight. Nearly all of this
overhead is incurred before adding label checks. We in-
fer that the cause is Starlight’s unoptimized implementa-
tion of the filesystem, which searches for a unique file-
name for creation by listing directory contents (instead
of storing an index), and updating a symlink to point to
that new file. This can be optimized pre-generating an
index. Label checks are stored and compared as strings

11



Test mplayer Flowplayer Starlight

CPU usage 5% 16% 18%
Max fps 303 – 66

Table 3: Peer to peer video player performance.

and could be optimized by a binary representation.

Regardless, end-to-end measurements of the
Desksearch application on Linux and Starlight show that
this overhead does not significantly impact performance.
The bottom two rows of Table 2 show the times to
perform an index and find using the Desksearch
application on both Linux and Starlight. Starlight actu-
ally outperforms Linux in these cases. This is probably
because glibc performs an mmap on each file open,
while NaCl’s libc does not. Nonetheless, the filesystem
overhead incurred by Starlight is clearly insignificant in
this case.

The ping benchmark shows the overhead of labeled
networking. First, tcpcrypt adds overhead by en-
crypting and MACing the packet (a 111us delay), and
second, Starlight needs to encode and decode label in-
formation, adding an extra 7us delay. Most application
deployed on the Internet will suffer from a much larger
propagation delay thus making the overhead of Starlight
less significant.

We also measure the performance of our Starlight
video player to show that the platform is fast enough for
complex and computationally intensive applications. Ta-
ble 3 shows performance results when playing a h.264
video on our Starlight video player, Flowplayer [4]
(a Flash video player) running in Flashplayer 10 and
mplayer [8]. We measure CPU usage (idle time) to de-
termine whether resource consumption is similar to al-
ternatives accepted today. While our video player is
not optimized, it consumes significantly more CPU than
mplayer, but about the same amount of CPU as the Flash
player. mplayer is highly optimized and has direct graph-
ics access—it is not forced to paint to the browser. We
also examine the maximum framerate our video player
was able to achieve. The particular video we played was
encoded at 29fps and at full CPU usage we could have
handled playing it at more than twice that speed. mplayer
can handle five times the frame rate of the Starlight video
player, but clearly Starlight is fast enough for video play-
back and leaves. Again, this difference is likely largely
attributed to mplayer’s high optimization and direct ac-
cess to graphics. In face, new versions of NaCl already
support direct screen access and even hardware acceler-
ation so we expect that high frame rate when we port
Starlight to the latest version of NaCl.

9 Related work

Starlight brings information flow control [23, 25, 35, 48]
to web applications. Starlight integrates with BFlow [46]
to support Javascript. BFlow optionally supports server-
side IFC, for example, by confining CGI scripts using
Flume [32]. However, BFlow assumes that web sites
are monolithic entities with a single owner of hardware
and web server software. Thus, BFlow lacks the security
benefits that Starlight achieves through cooperation with
cloud providers. Additionally, BFlow does not enforce
security policies specified by the user on the client-side,
rather the server specifies which information is secret.

Java, Flash, HTML5 and Silverlight each allow some
degree of both filesystem and network access. However,
they tend to be limited by, e.g., the same origin policy,
or too broad by, e.g., permitting unmitigated access to
the filesystem. Starlight allows full use of the network
and filesystem but restricts access based on IFC policies
set by the user, applications and servers. Also unique
to Starlight is the ability to infer permissions based on
existing user actions.

Starlight uses disjunctive category labels, previously
used only in languages-level systems [35, 41]. Starlight
adapts them for an OS-like environment and shows how
disjunctive labels enable easy sharing of data, a require-
ment and good fit for many web applications. Starlight’s
label system is most similar to HiStar’s [48], although
the addition of disjunctions eliminates the need for other
more complex sharing mechanisms like gates. Starlight’s
network support is based on that of DStar [49]. Unlike
DStar, Starlight is geared for the Internet, providing a
distributed naming mechanism and service for discover-
ing public key of principals—Starlight goes beyond the
LAN deployment scenario.

Starlight combines information flow control with the
idea of granting privileges based on user actions. Previ-
ous work focused [30, 31, 42, 45] on the usability and de-
sign of security related user feedback, whereas we focus
on deriving user intent and privilege. We contribute a two
step process for applying the idea in a generic way. By
separating endorsement and privileges, we objectively
monitor user actions and defer to policy modules to in-
terpret these user actions. This separation also localizes
policy code allowing for simpler auditing. Abadi and
Fournet [13] use past code executions, rather than user
actions to grant privileges.

The endorsements and privileges granted to Starlight
applications, though similar, differ from capabilities [17,
38]. Endorsements cannot be invoked but merely act as
proof. The approach of translating endorsements to priv-
ileges is similar in nature to PolicyMaker [16] though the
latter focuses on trust relationship rather than attempting
to derive user intent from actions. However, our notion

12



of privileges (though not endorsements) are in form ca-
pabilities.

A series of work based on Jif [35], the most popular in-
formation flow control compiler for Java, addresses IFC
in web applications. SIF (Servlet Information Flow) is a
framework that essentially allows programmers to write
their web applications as Servlets in Jif [20]. Swift [19],
based on Jif/split [47, 51], compiles Jif-like code for web
applications into JavaScript code running in the client
and Java code running in the server by applying clever
partitioning algorithms. Our approach differs from these
works in several ways. Firstly, our web application
model realizes the presence of three separate parties, in-
cluding the application author, and thus accounts for the
execution of untrustworthy code. Second, as demon-
strated by using NaCl in the client-side and Haskell+LIO
on the server-side, our model does not restrict applica-
tions to being implemented using a single development
platform; conceptually, any dynamically enforced IFC
system can be used in place of LIO or NaCl, with the sole
requirement of requiring an implementation of the DStar
protocol. Of course, the Jif-based systems can leverage
the features of a statically enforced IFC system and thus
prevent runtime failures and covert channel attacks.

MashupOS [26] allows sandboxing web applications
though the user must decide a priori which components
to trust whereas in Starlight all application components
are untrusted. The main distinction is that Starlight uses
IFC which is a form of mandatory, rather than discre-
tionary, access control [21, 37]. Similarly, Tahoma [28]
is also a discretionary access control system for build-
ing web applications, offering an all-or-nothing model in
terms of who is allowed to access sensitive data. More
recently, Waterken [33] has been used to build secure dis-
tributed web applications, however, using the object ca-
pability model, which cannot enforce DIFC as directly.

IBOS [43] restructures the operating system to be tai-
lored specifically to web browsing, resulting in dramatic
reductions to the TCB. While Starlight extends to server-
side too, some of the ideas from IBOS could be applied
to Starlight’s client-side to limit compromise. Xax [24]
like NaCl provides a sandbox for browser applications
and it could be a good alternative sandbox framework
for Starlight.

Logical attestation [40] allows specifying a security
policy in logic and the system ensures that the policy is
obeyed by all server-side components. Starlight includes
client-side components and in addition the policy is gen-
erated based on user action without requiring any manual
specification. Both in Logical attestation and CloudVi-
sor [50] TPMs are used to eliminate trust from Cloud
providers. It may be possible to use these systems or
TPMs in server-side Starlight, too for the same benefit.

10 Conclusion

We presented Starlight, a clean-slate unified security ar-
chitecture for the web. Starlight uses information flow
control to ensure security where policies must be en-
forced across multiple components on both the client and
server. While today each new web technology requires
ad-hoc reasoning about security, Starlight provides an
objective basis for thinking about web components. We
argue that the web’s inherent interactivity allows security
policies to be seamlessly inferred from application usage
rather than forcing cumbersome settings on the user. Fur-
thermore, within our unified security architecture we can
safely add rich web APIs such as filesystem, networking,
and device access.

We built a number of applications on top of Starlight
including an audio conferencing system, a SIP phone,
a BitTorrent based video player, and networked Quake.
None of these applications need to be trusted by users,
illustrating the power and generality of the Starlight de-
sign. Most importantly, what prevents these applications
from being built on today’s web are precisely the security
concerns that Starlight addresses.

References

[1] libbt. http://libbt.sourceforge.net/.

[2] Ed - A line-oriented text editor. http://www.
gnu.org/software/ed/.

[3] FFmpeg. http://www.ffmpeg.org/.

[4] Flowplayer - Flash Video Player for the Web.
http://flowplayer.org/.

[5] The FreeType Project. http://www.
freetype.org/.

[6] Google Chat. http://www.google.com/
talk/.

[7] ID Utils - GNU Project - Free Software Foundation
(FSF). http://www.gnu.org/software/
idutils/.

[8] MPlayer - The Movie Player. http://www.
mplayerhq.hu/.

[9] Open Source Portable SIP Stack and Media Stack
for Windows and Mac OS X from PJSIP.ORG.
http://www.pjsip.org/.

[10] SDL-Terminal library — Get SDL-Terminal library
at SourceForge.net. http://sourceforge.
net/projects/sdl-terminal/.

13



[11] Twilio. http://www.twilio.com/api/
client/.

[12] Adobe flash player 10.0.12 security.
White paper, November 2008. URL
\url{https://www.adobe.com/
devnet/flashplayer/articles/flash_
player10_security_wp.html}. Available
online (52 pages).

[13] M. Abadi and C. Fournet. Access control based on
execution history. In IN PROCEEDINGS OF THE
10TH ANNUAL NETWORK AND DISTRIBUTED
SYSTEM SECURITY SYMPOSIUM, pages 107–
121, 2003.

[14] D. Akhawe, A. Barth, P. Lam, J. Mitchell, and
D. Song. Towards a formal foundation of web
security. In Computer Security Foundations Sym-
posium (CSF), 2010 23rd IEEE, pages 290–304.
IEEE, 2010.

[15] Andrea Bittau, Michael Hamburg, Mark Handley,
David Mazieres, and Dan Boneh. The case for
ubiquitous transport-level encryption. In USENIX
Security 2010, USENIX Security10. USENIX As-
sociation, 2010.

[16] M. Blaze, J. Feigenbaum, and J. Lacy. Decen-
tralized trust management. In SP ’96: Proceed-
ings of the 1996 IEEE Symposium on Security
and Privacy, pages 164+, Washington, DC, USA,
1996. IEEE Computer Society. ISBN 0-8186-
7417-2. URL http://portal.acm.org/
citation.cfm?id=884248.

[17] A. C. Bomberger, W. S. Frantz, A. C. Hardy,
N. Hardy, C. R. Landau, and J. S. Shapiro. The
keykos nanokernel architecture. In Proceedings of
the Workshop on Micro-kernels and Other Kernel
Architectures, pages 95–112, Berkeley, CA, USA,
1992. USENIX Association. ISBN 1-880446-42-1.

[18] J. C. Burstoloni and R. Villamarin-Salomon. Im-
proving security decisions with polymorphic and
audited dialogs. In Symposium On Usable Privacy
and Security, pages 76–85. ACM Press, July 2007.

[19] S. Chong, J. Liu, A. Myers, X. Qi, K. Vikram,
L. Zheng, and X. Zheng. Secure web applications
via automatic partitioning. ACM SIGOPS Operat-
ing Systems Review, 41(6):31–44, 2007.

[20] S. Chong, K. Vikram, and A. Myers. Sif: Enforcing
confidentiality and integrity in web applications. In
Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, page 1. USENIX
Association, 2007.

[21] D.Bell and L.LaPadula. Secure computer sys-
tems: Unified exposition and multics interpretation.
In Technical Report ESD-TR-75-306, MTR-2997,
MITRE, Bedford, Mass, 1975.

[22] Deian Stefan, David Mazières, John Mitchell, Ale-
jandro Russo. Disjunction Category Labels. In
NordSec 2011, LNCS. Springer, October 2011.

[23] D. E. Denning. A lattice model of secure informa-
tion flow. Commun. ACM, 19:236–243, May 1976.
ISSN 0001-0782. doi: http://doi.acm.org/10.1145/
360051.360056. URL http://doi.acm.org/
10.1145/360051.360056.

[24] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch.
Leveraging legacy code to deploy desktop applica-
tions on the web. In OSDI, pages 339–354, 2008.

[25] P. Efstathopoulos, M. Krohn, S. VanDeBogart,
C. Frey, D. Ziegler, E. Kohler, D. Mazières,
F. Kaashoek, and R. Morris. Labels and event pro-
cesses in the asbestos operating system. In SOSP,
2005.

[26] J. Howell, C. Jackson, H. J. Wang, and X. Fan.
Mashupos: operating system abstractions for client
mashups. In HOTOS’07: Proceedings of the
11th USENIX workshop on Hot topics in operat-
ing systems, pages 1–7, Berkeley, CA, USA, 2007.
USENIX Association.

[27] L. Huang, E. Chen, A. Barth, E. Rescorla, and
C. Jackson. Talking to yourself for fun and profit.
In Proceedings of the Web 2.0 Security & Privacy,
2011.

[28] R. C. Jacob, R. S. Cox, J. G. Hansen, S. D. Gribble,
and H. M. Levy. A safety-oriented platform for web
applications. In In IEEE Symposium on Security
and Privacy, pages 350–364, 2006.

[29] S. Jones, A. Gordon, and S. Finne. Concurrent
haskell. In ANNUAL SYMPOSIUM ON PRINCI-
PLES OF PROGRAMMING LANGUAGES. Cite-
seer, 1996.

[30] A. Karp, M. Stiegler, and T. Close. Not one click
for security? In SOUPS ’09: Proceedings of the 5th
Symposium on Usable Privacy and Security, pages
1–1, New York, NY, USA, 2009. ACM. ISBN 978-
1-60558-736-3. doi: http://doi.acm.org/10.1145/
1572532.1572558.

[31] A. H. Karp and M. Stiegler. Making policy deci-
sions disappear into the user’s workflow. In CHI EA
’10: Proceedings of the 28th of the international
conference extended abstracts on Human factors in

14



computing systems, pages 3247–3252, New York,
NY, USA, 2010. ACM. ISBN 978-1-60558-930-5.
doi: http://doi.acm.org/10.1145/1753846.1753966.

[32] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, M. F.
Kaashoek, E. Kohler, and R. Morris. Informa-
tion flow control for standard os abstractions. In
Proceedings of twenty-first ACM SIGOPS sympo-
sium on Operating systems principles, SOSP ’07,
pages 321–334, New York, NY, USA, 2007. ACM.
ISBN 978-1-59593-591-5. doi: http://doi.acm.org/
10.1145/1294261.1294293. URL http://doi.
acm.org/10.1145/1294261.1294293.

[33] A. Mettler, D. Wagner, and T. Close. Joe-e: A
security-oriented subset of java. In Network and
Distributed Systems Symposium. Internet Society,
2010.

[34] M. Miller, B. Tulloh, and J. Shapiro. The structure
of authority: Why security is not a separable con-
cern. Multiparadigm Programming in Mozart/Oz,
pages 2–20, 2005.

[35] A. Myers and B. Liskov. Protecting privacy using
the decentralized label model. ACM TOSEM, 9(4):
410–442, 2000.

[36] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn.
Design and implementation of a TCG-based in-
tegrity measurement architecture. In Proceed-
ings of the 13th conference on USENIX Security
Symposium-Volume 13, pages 16–16. USENIX As-
sociation, 2004.

[37] J. H. Saltzer and M. D. Schroeder. The protection
of information in computer systems, 1975.

[38] J. S. Shapiro, J. M. Smith, and D. J. Farber. Eros:
a fast capability system. In In Symposium on Oper-
ating Systems Principles, pages 170–185, 1999.

[39] K. Singh, A. Moshchuck, H. Wang, and W. Lee.
On the incoherencies in web browser access control
policies. In Proceedings of IEEE Symposium on
Security and Privacy (Oakland). IEEE, 2010.

[40] E. Sirer, W. de Bruijn, P. Reynolds, A. Shieh,
K. Walsh, D. Williams, and F. Schneider. Logical
attestation: an authorization architecture for trust-
worthy computing. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Prin-
ciples, pages 249–264. ACM, 2011.

[41] D. Stefan, A. Russo, J. C. Mitchell, and
D. Mazières. Flexible dynamic information flow
control in Haskell. In Haskell Symposium, pages
95–106. ACM SIGPLAN, September 2011.

[42] M. Stiegler, A. Karp, K. Yee, T. Close, and
M. Miller. Polaris: virus-safe computing for win-
dows xp. Communications of the ACM, 49(9):83–
88, 2006.

[43] S. Tang, H. Mai, and S. T. King. Trust and
protection in the illinois browser operating
system. In Proceedings of the 9th USENIX
conference on Operating systems design and
implementation, OSDI’10, pages 1–8, Berkeley,
CA, USA, 2010. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=
1924943.1924945.

[44] B. Yee, D. Sehr, G. Dardyk, J. B. Chen,
R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar. Native client: a sandbox for
portable, untrusted x86 native code. Commun.
ACM, 53:91–99, January 2010. ISSN 0001-
0782. doi: http://doi.acm.org/10.1145/1629175.
1629203. URL http://doi.acm.org/10.
1145/1629175.1629203.

[45] K.-P. Yee. User interaction design for secure sys-
tems. In In Proceedings of the 4th International
Conference on Information and Communications
Security, pages 278–290. Springer-Verlag, 2003.

[46] A. Yip, N. Narula, M. Krohn, and R. Mor-
ris. Privacy-preserving browser-side scripting with
bflow. In EuroSys ’09: Proceedings of the 4th
ACM European conference on Computer systems,
pages 233–246, New York, NY, USA, 2009. ACM.
ISBN 978-1-60558-482-9. doi: http://doi.acm.org/
10.1145/1519065.1519091.

[47] S. Zdancewic, L. Zheng, N. Nystrom, and A. My-
ers. Untrusted hosts and confidentiality: Secure
program partitioning. In ACM SIGOPS Operat-
ing Systems Review, volume 35, pages 1–14. ACM,
2001.

[48] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making information flow explicit in
HiStar. In OSDI, 2007.

[49] N. Zeldovich, S. Boyd-wickizer, and D. Mazires.
Securing distributed systems with information flow
control. In In Proc. of the 5th NSDI, pages 293–
308, 2008.

[50] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloud-
Visor: retrofitting protection of virtual machines in
multi-tenant cloud with nested virtualization. In
Proceedings of the Twenty-Third ACM Symposium
on Operating Systems Principles, pages 203–216.
ACM, 2011.

15



[51] L. Zheng, S. Chong, A. C. Myers, and
S. Zdancewic. Using replication and parti-
tioning to build secure distributed systems. In
Proceedings of the 2003 IEEE Symposium on
Security and Privacy, SP ’03, Washington, DC,
USA, 2003. IEEE Computer Society.

16


